MaNGA in M31 — details part 3

Before I get into details of the individual IFUs here is the result of a little exercise I did to estimate the deprojected positions of the IFU centers using the canonical values of 77° for the inclination and 38° for the major axis position angle, and applying the coordinate conversions I outlined way back in this post with slight modifications. These are fairly rough estimates since Andromeda’s disk is apparently warped and rather thick, but this may help give some perspective on relative positions in the plane of the galaxy. For reference I’ve drawn semcircles at 6, 10, and 16 kpc, and circled the IFUs that I had placed in the 10 kpc ring. Two of the IFUs — plateifus 9678-6102 and 9678-9102 — now appear to be at or beyond its outer edge at radii of 12.9 and 13.5 kpc, while plateifu 9678-9101 which I had assigned to the outer desk is a bit closer at 12.1 kpc. But, no matter. I will discuss them in the same order as I presented the IFU wide star formation histories several posts ago.

Approximate deprojected coordinates of M31 MaNGA IFUs. Coordinates are in kiloparsecs relative to the galaxy center, with the X axis parallel to the major axis and increasing to the northeast.

plateifu 9677-9102 (mangaid 52-1)

This is already a recurring theme. There is a single cataloged H II region within the IFU footprint that coincides with the highest (uncorrected) Hα luminosity density bin below. The bin with the highest (100 Myr) SFR density is displaced by several parsecs to the northeast. The first region has an increasing star formation rate over the last ~30 Myr, while the second shows a sharp peak and rapid decline over the last 10 Myr. If the models are remotely correct this is clear evidence for propagation of star formation over short distances.

plateifu 9677-9102 (M31 10 kpc ring). (TL) Hα luminosity density. (BL) SFR density (100 Myr average) (TR) SFR history for the region with highest Hα density. (BR) SFR history for the region with highest SFR density.

plateifu 9677-12702 (mangaid 52-7)

Despite being right in the middle of the 10 kpc ring there’s nothing very interesting in this IFU, with just a single cataloged red supergiant and a small and rather faint H II region that’s at or beyond the edge of the footprint. Only weak diffuse emission is seen in the MaNGA data. Nevertheless there are a few areas with evidence for recent star formation:

9677-12702_sfr_2bins
plateifu 9677-12702 (M31 10 kpc ring) (L) map of SFR density (R) star formation histories for 2 regions with higher than average SFR density.

I recently noticed that one of the imaging products available in Aladin is a color composite assembled from the PHAT F475W and F814W ACS/WFC observations. One thing these are good for is they give you a very rough idea of stellar temperatures. To my eyes at least stars appear orange, white, or blue. Bright blue stars must be young; bright orange ones are evolved (or reddened by dust perhaps) and might be young or old. Notice below that the two areas with relatively high star formation have a sprinkling of bright blue stars, while the bulk of the field contains predominantly orange ones.

The other optical wavelength imaging I look at comes from SDSS. Even though the imaging in this area is incomplete and the processing leaves something to be desired it does have the virtue that Hα is, at low redshift, in the r filter, which forms the green channel in their images. M31 H II regions then are identifiable by their green color. Also, red supergiants look distinctly red since their brightness is still increasing into the near IR.

plateifu 9677-12702 (M31 10 kpc ring) Cutout of PHAT color composite taken from Aladin

plateifu 9678-6102 (mangaid 52-20)

This lies on the outer edge of the 10 kpc ring, some distance from UV bright sources and H II regions. There is one cataloged planetary nebula and that shows up in my modeling as a region with “AGN” like emission line ratios. One fiber has a much higher modeled specific star formation rate than its surroundings. A map of SSFR and star formation history for that region are shown below. There are bright red and yellow stars in the region which might be (uncatalogued?) red supergiants.

MaNGA plateifu 9678-6102 (M31 10 kpc ring) (L) map of model specific star formation rate (R) star formation history for the region with highest SSFR

9678-9102 (mangaid 52-18)

This is the final IFU on the eastern side of the 10 kpc ring. Once again it lies at the outer edge, well away from active star forming regions. There is weak emission throughout, with star forming line ratios through much of the IFU footprint despite the lack of evident star forming regions. There’s some unresolved UV emission in the GALEX color image that roughly corresponds in location to the area of brighter Hα.

The region with the greatest recent star formation has some fairly bright blue and yellow stars in the PHAT color image

plateifu 9678-9102 (M31 10 kpc ring) (TL) Hα luminosity density (TR) BPT classiication by [N II]/Hα vs {O III]]/Hβ diagnostic (BL) 100Myr average specific star formation rate (BR) model star formation history for the region with highest SSFR

By the way I do check observational quantities in my models against the SDSS product Marvin now and then. Here’s their rendering of the Hα flux:

9678-9101 (M31 10 kpc ring) Marvin measurement of Hα flux [link]

Qualitatively at least the agreement is excellent. I’d have to check if their fluxes are consistent with my log-luminosities.

plateifu 9678-12703 (mangaid 52-23)

Finally we get to the most interesting IFU in the project, plateifu 9678-12703, which lies very close to the region with the highest recent star formation in the northeastern half of the galaxy. It also appears to coincide in position with one of the regions that Lewis et al. (2015) highlighted (their Figure 2). As can be seen in the Aladin cutouts (from SDSS and PHAT color images) below there are several young stellar objects within and near the IFU footprint: at least two red supergiants (which are a problem); 3 catalogued H II regions, one of which is bright and extended; some OB associations that are centered outside the footprint; and one open star cluster. There are a number of bright blue stars scattered throughout as can be seen in the color PHAT image.

9678-12703_cutouts
plateifu 9678-12703 (M31 10 kpc ring) Symbols: yellow circle: H II region red circle: red supergiant purple oval: star cluster blue rhombus: OB association blue squares: IFU outline

Plotted below are maps of Hα luminosity density and model star formation rate density, along with model star formation histories for two regions. The first is for the bins in the brightest part of the H II region along the western edge of the IFU. The second is for two bins at the position of a cataloged open cluster (Johnson et al. 2016) that’s fairly obvious in the PHAT cutout. The cataloged (log) age of the cluster is 8.4-0.1+0.3 with a mass around 104 M☉. The peak star formation rate in the model history below (bottom right) is at about 500 Myr lookback time with several hundred Myr of enhanced star formation, so this is pretty good agreement.

plateifu 9678-12703 (M31 10 kpc ring) (TL) Hα luminosity density (uncorrected) (BL) model star formation rate density (TR) star formation history for areas with highest Hα luminosity. (BR) SFH for a region covering a cataloged open cluster

When I did my initial fitting runs on this IFU I noticed one fit that was rather poor which I attributed to a foreground star, and therefore I masked it for subsequent analysis. It turned out though the culprit was not a foreground star but instead a local red supergiant that’s been cataloged (for example) by Ren et al. (2021). Their catalog lists its G band magnitude from Gaia DR2 as 19.1 which makes its absolute magnitude around -5.3, a reasonable value for its presumed spectral type.

This raises an issue that’s fairly well known. Simple stellar population models assume the age zero main sequence is fully occupied according to a well defined initial mass function. This is a fairly innocuous assumption (although the choice of IMF is not) when we’re sampling ~billion solar mass regions, but it’s not so innocuous for cluster size agglomerations, which is what we’re sampling here1the typical binned region has a present day stellar mass around 104 M☉ per my models. The particular problem here is that a single red supergiant is making a significant contribution to the spectrum in the red, and that could be biasing the model SFH in as yet unexplored ways.

The bin at the position of the other bright supergiant in the footprint was analyzed, so lets take a quick look. In the top pane below is the model star formation history, and in the two below the (posterior predictive) fit to the data and the residuals from same. The fit doesn’t look so bad except for a region around 7200 Ã…, which often seems to be a problem with EMILES spectra.

Superficially the model star formation history looks not implausible, and similar to others I’ve shown. The presence of an evolved star indicates a stellar age in the right general range, as does the relative lack of H II emission. Despite the strength of the burst it adds only about 7% to the present day stellar mass, with as elsewhere the majority of the stellar mass was in place by 8 Gyr ago (per the model, as always).

But, there’s at least one indicator of a problem: the modeled optical depth of attenuation is extraordinarily high at Ï„V ≈ 4.4, compared to the optical depth estimated from the Balmer decrement of Ï„Vbd = 1.47 ± 0.23. I plan to discuss this in more detail in a future post, but for now I’m moving on.

plateifu 9678-12703 (M31 10 kpc ring) model star formation history for a region with high recent SFR

plateifu 9678-9101 (mangaid 52-26)

As mentioned at the top this appears to be in a spur off the 10 kpc ring. There is just one cataloged H II region within the footprint that appears to be compact. Just to the west there is a sprinkling of bright blue stars and an unresolved blob in the Galex color image. The H II region is evident in the map below. Once again the regions with the highest Hα luminosity and highest (100 Myr averaged) star formation rate are slightly offset from each other. The model star formation histories are very similar though.

plateifu 9678-9101 (M31 10 kpc ring) (TL) Hα luminosity density (uncorrected) (BL) model star formation rate density (TR) star formation history for area with highest Hα luminosity. (BR) SFH for area with highest recent star formation rate

I’m going to stop for now and cover the last 4 outer disk IFUs in (probably) the next post.

MaNGA in M31 – details part 2 – the inner disk

Instead of trying a systematic investigation I’m just going to go through each IFU and discuss whatever I found interesting, with no particular theme in mind. I still don’t really know what I’m going to find since it’s been a while since I looked at model results. Besides modeling star formation histories for each spectrum I calculate summaries in the form of posterior marginal means, standard deviations, and a few quantiles for a large number of quantities. Some of these are highly model dependent such as 100 Myr averaged star formation rates and specific star formation. Some are only weakly model dependent, such as emission line fluxes1These depend on correction for absorption, but we don’t need a believable star formation history for that, just a reasonable template match. One thing I haven’t looked at much is stellar metallicities and especially their evolution in the models. There are always contributions from all metallicity bins at all times in my models, and how to interpret them or whether even to try still puzzles me. I am starting to look more seriously at strong emission line metallicity estimates. The estimator proposed by Dopita et al. (2016) based on [N II], [S II], and Hα seems especially promising since they’re usually detected with reasonable precision in SDSS spectra.

So, the plan is to look at each IFU, working my way outward in the disk in the same order as my second post in this series.

plateifu 9677-12705 (mangaid 52-4)

This is the innermost IFU with a projected distance from the nucleus of 1.9 kpc. According to Walterbos and Kennicutt (1988) the effective radius of the bulge is 2 kpc, so a significant fraction of the light is coming from bulge stars.

What’s most interesting about this IFU is what it lacks, which is any significant star formation. I also saw little spatial variation in model star formation histories, so I’ll simply repeat the IFU wide history compared to the nearest PHAT tile:

Innermost IFU 9677-12705 SFR and mass growth histories compared to models for nearest PHAT region.

This region had the most rapid initial stellar mass growth and conversely the steepest decline in SFR of any of the MaNGA IFU’s, which is completely consistent with the consensus “inside out” growth paradigm.

One other moderately interesting result is that despite the lack of young stars there are detectable emission lines throughout with a mix of “LINER” and composite like line ratios from the [N II]/Hα vs. [O III]/Hβ diagnostic and the classification scheme of Kauffmann with Schawinski’s addition of the LINER/AGN divide. As is well known by now LINER (and presumably “composite” although I haven’t seen literature on the issue) emission can be spatially extended and does not at all necessarily indicate ionization by an AGN. M31 has widespread emission from diffuse ionized gas. About 14% of all binned spectra had line ratios in these categories and “AGN” like, and 90% of the LINER-like spectra are in this IFU. A similar fraction of spectra have star forming emission line ratios, which reflects the patchy nature of star formation in M31.

plateifu 9677-12705 – BPT class per [N II]/Hα vs [O III]/Hβ diagnostic

plateifu 9677-6102 (mangaid 52-3)

There’s little to say about this one. The entire IFU is offset by a small amount from some GALEX UV bright sources and there are no objects in any of the catalogs I’ve loaded within the footprint. The only prominent feature is a very prominent dust lane that covers the southeastern half of the IFU. Oddly, the estimated specific star formation rate tracks the dust rather closely.

plateifu 9677-6102 (M31 inner disk). Specific star formation rate

There’s a clear correlation between SSFR and optical depth of attenuation, and also with the “tilt” of the attenuation relation:

plateifu 9677-6102 (M31 inner disk). Specific star formation rate vs. dust optical depth.

Whether this is meaningful or a modeling artifact I can’t say at this point. I kept my simple single component dust model for these runs even though M31 is known to have both a foreground screen and embedded dust.

plateifu 9677-6103 (mangaid 52-2)

This again is in a nearly featureless area except for a prominent dust lane, with no sources in any catalog I consulted. The entire IFU lacks significant emission and there is no evidence in the models for significant recent star formation. Oddly, there’s a very similar relation between model specific star formation rate and model optical depth:

plateifu 9677-6103 (M31 inner disk). Specific star formation rate vs. dust optical depth.

plateifu 9677-12701 (mangaid 52-8)

This is the closest IFU to the nucleus that lies within a significant spiral structure as seen by GALEX. The thumbnail below shows its position overlaid on the false color GALEX image available within Aladin. The IFU appears to lie in a spur off a spiral arm a little farther out2There doesn’t seem to be a strong consenus about the overall spiral structure of M31. All modern authors agree that the “10 kpc ring” is a complete ring, with a split in the south not too far from the projected position of M32. I’ve also seen references to 6 and 16 kpc rings, but others claim that various classes of young objects are strung out along a pair of logarithmic spirals. This idea goes back to early 1960’s work by Baade and Arp. I will just note IFU’s in UV bright areas in GALEX since this seems to be the best tracer of recent star formation and a number of discrete UV bright sources are visible within its footprint, which is marked with the irregular set of blue symbols. Also shown are cataloged positions of H II regions (yellow dots), red supergiants (red diamonds), and an OB association (blue square)3data sources are given in the last post. All of these are available through Aladin’s data collection.

9677-12701-galexcutout
Thumbnail of plateifu 9677-12701 (M31 inner disk) overlaid on GALEX false color image. Yellow dots: cataloged H II regions. Red dots: cataloged red supergiants. Blue square: OB association.

Let’s look at a couple of maps. The blank area at upper right was masked due to a likely foreground star. The spectra in the chain of blank areas at bottom had Hα partially masked. Units in the Hα luminosity density map are log10 ergs/sec/kpc2, uncorrected for attenuation. Units of the SFR density maps are log10 M☉/yr/kpc2.

9677-12701_ha_sfrmaps
plateifu 9677-12701 (M31 inner disk). (L) Uncorrected Hα luminosity density. (R) 100 Myr average SFR density.

To a pretty good approximation regions that are relatively bright in Hα track the UV bright areas and cataloged H II regions. There are two areas that stand out as having much higher than average SFR density. One, at lower left, coincides with a bright H II region. The other one, at center right, has low Hα luminosity but lies right on the cataloged position of a red supergiant. The presence of an evolved star and absence of emission suggests that star formation has recently (in the last ~70 Myr, say) ended in that area. Comparing the model star formation histories the region with little Hα emission does show a sharp drop-off after a peak at 10 Myr lookback time:

9677-12701_sfh_2regions
plateifu 9677-12701 (M31 inner disk) – model star formation histories for 2 star forming regions.

One other thing I’ll just note for now is that regions with the highest star formation rate tend to have neighboring regions with higher than average star formation as well. These seem to occur in clumps or chains a few 10s of parsec in size. I will get, eventually, to some more dramatic examples.

plateifu 9677-9101 (mangaid 52-9)

This and the next IFU are in a spiral segment that some authors call the “6 kpc ring,” but the GALEX false color image shows no very bright UV sources and there are no cataloged young objects within the footprint.

9677-12701 GALEX cutout

One mildly interesting result is that the modeled 100 Myr SFR density correlates rather strongly with Hα luminosity density, but an order of magnitude higher than predicted from Calzetti’s calibration. All of the emission in this region appears to be from diffuse ionized gas as there are no cataloged discrete sources of emission, and no regions with starforming line ratios. A literal interpretation of this, which might even be true, is that star formation has ceased in the recent past.

9677-9101_ha_sfr
plateifu 9677-9101 (M31 inner disk). Star formation rate density vs. Hα luminosity density.

plateifu 9677-12704 (mangaid 52-5)

This is also in the 6 kpc spiral feature but in an area with no bright UV sources and that appears to be heavily dust obscured in optical images. Since I don’t have anything very interesting to say about this region I’ll just post the modeled star formation history for the region within the IFU footprint with the highest modeled SFR density. This is near the western edge of the IFU and isn’t associated with any cataloged young objects.

plateifu 9677-12704 (M31 inner disk). Star formation rate history for a region within the IFU footprint with the highest modeled recent SFR.

The region with the highest Hα luminosity is near the southwest edge and covers the position of a cataloged planetary nebula. The emission line ratios are inconsistent with a starforming region, falling in Kauffmann’s “AGN” region.

plateifu 9677-12703 (mangaid 52-6)

This and the last IFU are in an inter-line region between the 6 and 10 kpc structures as seen by GALEX, but with lots of diffuse starlight and relatively little dust. Emission lines are weak or undetected throughout, but there is a cataloged H II region near the southern edge. The peak in Hα luminosity density is easily seen in the map below in the bottom left pane. The region with the highest SFR density is displaced by ~10 pc. from the region with highest Hα luminosity. Interestingly, the SFR models show significant differences in recent histories: the region with highest SFR shows a very sharp and short lived peak at ~10 Myr, while the highest Hα luminosity region is still growing in SFR (per the model). Again, I hesitate to take these model histories too literally, especially at the youngest ages, but these are consistent with the fact that ionized gas emission will fade rather rapidly as the most massive stars in a region evolve away from the main sequence.

plateifu 9677-12703 (M31 inner disk). (TL) SFR density (100 Myr average) (BL) Hα luminosity density. (TR) SFR history for the region with highest SFR density. (BR) SFR history for the region with highest SFR Hα luminosity density.

plateifu 9678-12705 (mangaid 52-21)

I don’t have much to say about this one either. It lies in a region that’s almost completely blank in the GALEX imaging, with a rather uniform sprinkle of stars in PHAT and the DSS2 image displayable in Aladin. Ionized gas emission is weak or undetected throughout. For the sake of having a graph to display here is a histogram of the per spectrum mean specific star formation rate (100 Myr average as always) comparing this IFU to the innermost one — plateifu 9677-12705.

9678-12705_ssfr
Distributions of mean specific star formation rate in two MaNGA M31 IFU’s

I hope to finish off M31 in one or at most two more posts. Next up are IFUs that fall in or near the 10 kpc ring, followed by the outer disk.

The MaNGA M31 ancillary program – model details (part 1?)

After a fairly long break I want to get back to M31 and MaNGA for one, or perhaps several posts and take a more detailed look at my model results. I still haven’t decided where I’m going to take this investigation. I may examine every IFU or just the ones that I found most interesting, and I’m not sure which of the many quantities that I estimate I’ll discuss. Besides my models I’ve retrieved a number of catalogs of interesting objects using Aladin. These include in particular H II regions (Azimlu et al. 2011), OB associations (Magnier et al. 1993), and red supergiants (Ren et al. 2021). All of these are products of recent or ongoing star formation. There are of course a huge number of catalogs of just about every type of astronomical object found in galaxies, and I may examine some more depending on what interests me.

For orientation here’s a screencap of the Legacy Survey sky browser’s false color GALEX image of the northern half of M31 with the IFU positions overlaid and labelled with MaNGA’s plateifu identifiers. As a reminder these are all located within the PHAT survey footprint and specifically within the region for which star formation histories were estimated by Williams et al. (2017).

lg_manga
Screen capture of Legacy Survey Galex image of M31 with MaNGA IFU overlay

Before getting to individual IFU’s here is one more set of IFU-wide results. The following three graphs are model mass growth histories in units of present day solar mass per kiloparsec2. These are uncorrected for projection effects.

There are a couple interesting points here. There’s a clear stratification of mass density with projected radius, with about a factor 30 decline from the innermost to outermost IFU. This is in fairly good agreement with Williams’ estimate in their Figure 14.

The other thing to note is that all regions had most (> 55%) of their stellar mass in place by 8 Gyr ago and 92-99% in place by 1 Gyr ago. The largest fraction of recent star formation is in the IFU 9678-12703, which is very close to the region with the highest SFR in this half of the galaxy. There is also a trend towards later mass build up with increasing radius, which is completely consistent with the “inside-out” growth paradigm. The outermost IFU, 9678-12701 at about 16kpc radius has formed about 5% of its present day stellar mass in the past Gyr.

As I said in the previous post I don’t see clear evidence for a widespread burst of star formation that’s widely believed to have occurred around 2-4 Gyr ago. A confounding factor in my models is that they invariably show jumps in SFR at times when the interval between SSP model ages change and the two oldest of these occur at 1 and 4 Gyr, so this produces a possibly spurious period of apparently accelerated star formation. I hope to find (or perhaps produce) a set of SSP models with a better age distribution this year.

mghden_innerdisk
Growth of stellar mass density – inner disk M31 MaNGA IFU’s
Growth of stellar mass density – M31 MaNGA IFU’s in 10 kpc ring
Growth of stellar mass density – outer disk M31 MaNGA IFU’s

I think I’m going to hit publish now and resume with inner disk IFU’s next time.

The MaNGA M31 ancillary program – comparing star formation history models

In this post I’m going to compare IFU wide star formation histories from my models to those of Williams et al. (2017) in the nearest 83″ by 83″ PHAT tile to each MaNGA IFU in the study. I picked the Williams paper for comparison mostly because it’s possible to! They give a complete tabulation of model results for all regions and all 4 sets of isochrones that they used, and these are available through the Vizier service. Specifically I used their Table 2, which provides star formation rate densities summed over all metallicities. Since the SSP model spectra I use are based on BaSTI isochrones I initially compared to their BaSTI based models. One problem with the Williams comparison is the authors had a very wide youngest time bin of 300 Myr, which is where my models should generally have the highest precision (I make no strong claims about accuracy). It would be nice to do a similar comparison to the earlier companion paper on recent star formation by Lewis et al., which gives a much finer grained view of the last ~half Gyr, but unfortunately there is no published tabulation of their results.

At the other end of the timeline the oldest bin is also very wide, from 8 to 14 Gyr lookback time. This isn’t a surprise: the limits for reliable photometry of individual stars were rather shallow, no fainter than m = 28 or Mg ≈ 3.6 according to Lewis. This is brighter than the main sequence turnoff at 8 Gyr, so any information about the truly ancient star formation history is coming from giant branch stars which have very similar evolutionary tracks at old ages1Checked by downloading a few isochrones from the BaSTI website.

At the end of my last post I mentioned the necessity to correct densities for the rather large inclination of M31’s disk. It turns out though that I reproduce Williams’ Table 3 from their Table 2 if the densities are uncorrected. Their tabulated SFR densities are in units of 10-4 M☉arcmin-2/year. One arcminute at their adopted M31 distance is about 0.227 kpc, so to convert to star formation rates per kpc2 the values in table 2 are multiplied by 19.8 × 10-4. From my models I sum the star formation rates over all modeled spectra in each IFU and divide by the total area in fibers, with each fiber covering a projected area of 42.78 pc2. Note that I do not try to analyze a single composite spectrum summed over the entire IFU since dust attenuation is quite patchy.

The graphs below overlay my modeled star formation rate densities on those of Williams in the tile with the nearest center to that of each IFU. The ribbons indicate the nominal 95% credible limits of SFR. These are certainly wildly optimistic. Table 2 of the paper includes uncertainty estimates, which I chose not to include. SFR densities are linearly scaled with different limits for each plot. The time scale is logarithmic. Something in between linear and logarithmic would seem more appropriate since this perhaps gives too much space to very recent times, but I haven’t found a suitable scaling.

These are ordered into three groups by location: the inner disk which is everything inside the 10 kpc ring, the 10 kpc ring, and the outer disk which is everything outside the 10 kpc ring. There’s some ambiguity about the locations of the plateifu’s 9678-9101 and 9678-12704. The first of these is about 12 kpc from the nucleus in what could be either a wide section of the 10 kpc ring or a separate structure. 9678-12704 appears in projection to be just outside the 10 kpc ring but it may be considerably farther out in a segment of spiral arm at ~15 kpc.

Commentary will continue after the graphs. I will discuss the individual IFU’s in more detail in later post(s).

Inner Disk

sfh_innerdisk
M31 MaNGA ancillary program – my star formation history models summed over each IFU compared to nearest tile in Williams et al. (2017) with BaSTI isochrones. Inner disk IFU’s.

10 Kpc ring

sfh_10kpc
M31 MaNGA ancillary program – my star formation history models summed over each IFU compared to nearest tile in Williams et al. (2017) with BaSTI isochrones. 10 kpc ring IFU’s.

Outer disk

sfh_outerdisk
M31 MaNGA ancillary program – my star formation history models summed over each IFU compared to nearest tile in Williams et al. (2017) with BaSTI isochrones. Outer disk IFU’s.

The first two things I noticed were that star formation in every region declines monotonically from very early times to at least 4 Gyr ago. It also starts out lower than in the PHAT team’s models. Because of this early time mass deficit all of my models have smaller current day stellar mass densities by varying amounts. I don’t really have a pat explanation for this. Some authors have posited a “dazzle effect”2I’m going to discuss this a little further at the end of the post where recent star formation obscures the contribution of old populations. It’s certainly likely that this occurs, but if these Bayesian models are behaving as I hoped this lack of information should manifest as larger uncertainties rather than a systematic bias. Well, my hope could be wrong. On the other hand I don’t see strong evidence in these models for such an effect. From my eyeball analysis I don’t see an obvious correlation between present day star formation and the size of the early time deficit.

Another possibility is a systematic difference in the amount or shape of attenuation between my models and theirs. There is another well known “degeneracy” between stellar age and attenuation in SFH modeling, but I haven’t yet investigated whether this could be occurring here.

The PHAT models have a very long interval from 8 to ~2-3 Gyr ago with very little star formation. Some authors find evidence for a large increase from about 2-4 Gyr which is usually attributed to a merger or perhaps close encounter with M33. This isn’t seen in the BaSTI based models but there is a large more recent burst from about 1-2 Gyr lookback time. My models see neither a cessation of star formation nor a particularly large burst at intermediate ages. As I’ve noted before my models “want” to have smoothly time varying light3and therefore mass contributions and this might make a modest burst at moderately large ages difficult to discern. Another confounding factor arises from the abrupt changes in age intervals (at 0.1, 0.5, 1, and 4 Gyr) which results in the sawtooth pattern in SFR that’s obvious in every plot above.

At ages younger than 1 Gyr there’s generally good agreement about the course of star formation up until the youngest age bin of width 300Myr in the PHAT models. My models have anywhere from slightly to dramatically higher SFR densities averaged over the most recent age bin. I suspect this is because many of the IFU positions were chosen to be in regions with active star formation. In particular the plateifu 9678-12703 (mangaid 52-23) is very close to the region in the 10 kpc ring with the highest density of ongoing star formation in the northern half of the disk.

I plan to discuss the individual IFUs in more detail in a later post. Below the fold are some more graphics: mass growth histories and SFR densities compared to the PADOVA isochrone based models.

Continue reading “The MaNGA M31 ancillary program – comparing star formation history models”

The MaNGA M31 ancillary program – preliminaries

One of the ancillary programs (with principal investigator Julianne Dalcanton) in the final MaNGA release targeted 18 fields in the disk of the Andromeda galaxy M31. The targets were selected from within the footprint of the “Panchromatic Hubble Andromeda Treasury,” aka PHAT1not my coinage., also with PI Dalcanton. The initial PHAT survey description was in Dalcanton et al. (2012) and was followed by a lengthy series of papers. Especially relevant for this discussion are two papers describing estimates of the recent and ancient star formation histories of the disk outside the area dominated by bulge light: Lewis et al. (2015), “The Panchromatic Hubble Andromeda Treasury. XI. The Spatially Resolved Recent Star Formation History of M31” and Williams et al. (2017), “PHAT. XIX. The Ancient Star Formation History of the M31 Disk.” For reference here is a mosaic of HST images in the F475W filter with the IFU locations overlaid:

m31manga_phathst
Mosaic of HST F475W images of PHAT study region with M31 MaNGA IFU positions overlaid

Zooming out to show the whole disk here they are overlaid on a false color FUV+NUV image from GALEX, which gives a pretty good picture of where stars are actually forming:

m31manga_galex
GALEX false color NUV+FUV image of M31 with MaNGA IFU positions overlaid – screencap from Aladin

This data set provides an excellent opportunity to compare my SFH modeling code to a completely different, more direct, method of inferring star formation histories namely counting resolved stars in color magnitude diagrams. I recently completed model runs for all 18 IFU’s with the same Voronoi binning of stacked RSS spectra, the same modeling code and SSP model spectra as I’ve used for a while now.

There’s no redshift listed in the DRP catalog; NED gives a heliocentric redshift of -0.001, but for purposes of calculating intrinsic quantities I need the “Hubble flow” redshift. I adopted a distance of 761 (± 11) kpc or distance modulus of (m-M)0 = 24.407 from Li et al. (2021), which is the most recent and according to the authors most precise determination to date. With my adopted Hubble constant of H0 = 70 km/sec/Mpc this makes the Hubble flow recession velocity 53.27 km/sec or zdist = 0.0001777. The angular scale is 3.69 pc/arc-second. This distance estimate is a few percent smaller than the PHAT team authors and most other recent literature I reviewed, but fortunately most other sources of uncertainty are much larger.

An issue I noticed early on was the modelled values of the optical depth of attenuation were right at 0 for almost all spectra with only a few much larger exceptions. A quick check of the metadata showed that the values adopted for the foreground galactic extinction almost certainly were taken from the SFD dust maps which faithfully capture the intrinsic dust content of M31 albeit at rather low resolution. These hugely overestimate the actual foreground galactic extinction and that has multiple undesirable consequences. So, I assigned a single extinction value of E(B-V) = 0.055 to all IFU’s, consistent with the NED value of AV = 0.17 mag. The preliminary runs were redone with the newly adopted extinction value.

After binning to a minimum mean SNR of 5 there were 2,624 spectra in the 18 IFUs, of which I ran models for 2,621. Three spectra had apparent foreground stars, although one of those might actually be a red supergiant in M31. The fibers are basically sampling star cluster size and stellar mass regions so a single extremely luminous star could potentially affect a spectrum.

I’m only going to show a few summary results for the entire sample in this post. My goal is to do a more detailed quantitative comparison to (at least) the SFH models of Wilson, for which there are extensive results tabulated. There are of course many catalogs of interesting objects within M31, and I plan to look at some of them.

First, here is a plot of the (100 Myr averaged) star formation rate density against stellar mass density, color coded by BPT diagnostic. The solid line is my estimate of the “spatially resolved star forming main sequence” based on a small sample of non-barred spiral galaxies. The dashed line is the estimate of Bluck et al. (2020), which I commented previously appears to mark approximately the location of the green valley at least with regard to my models. A striking feature of this plot is the apparent stratification into at least three distinct groups that can be interpreted as starforming, quiescently evolving, and passively evolving. I suspect this observed stratification is just the result of hand picking a small number of “interesting” regions. Most or perhaps all of the points in the passively evolving group are in the IFU closest to the bulge, while most of those along and above the SFMS lie near the most vigorously star forming regions in the PHAT footprint. Especially noteworthy are 5 outliers that are well above any others in the plot in terms of SFR density. These are all in the same IFU (plateifu 9678-12703) which is located within the largest star forming region in that quadrant of the “10 kpc ring.”

m31manga_sigmam_sigmasfr
100 Myr average star formation rate density vs. stellar mass density for 2621 binned spectra in M31 disk. Solid and dashed lines are my and Bluck’s central estimates of the “spatially resolved star forming main sequence.

Next are plots of star formation rate density against Hα luminosity density. The left panel is for all spectra color coded by BPT diagnostic, with Hα adjusted by the modeled amount of stellar attenuation. The right panel shows regions with star forming BPT diagnostics only, with Hα corrected by the observed Balmer decrement. The solid line in both panels is Calzetti’s calibration of the Hα – SFR relationship. The relationships plotted here are consistent with what I’ve seen in other MaNGA samples and with published values, which is encouraging.

m31manga_sigmaha_sigmasfr
Star formation rate density vs. Hα luminosity density for 2621 binned spectra in M31 disk. (L) Emission corrected for modeled stellar attenuation. (R) For regions with star forming emission line ratios only: emission corrected from estimated Balmer decrement.

The obvious point of comparison to my models are the detailed star formation histories in the two PHAT papers mentioned at the top. Unfortunately there is no detailed tabulation of model results in the paper by Lewis et al. The paper by Williams et al. has extensive tables, but there are still a few obstacles to detailed comparisons which I will discuss next time.

A few more items from my handwritten notes that I want to get in pixels. I have never previously tried to correct surface densities for inclination in disk galaxies, but for comparison purposes and because of the large inclination of M31’s disk I need to do so here. I adopted an inclination angle of 77°, so a 1″ radius fiber covers a 3.69 x 16.4 pc (semi major and minor axes) elliptical region, or 190 pc2. Densities need to be adjusted downward by a factor 4.45 or -0.648 dex2This adjustment was not made in the plots above. Since these are plots of densities against densities all points would just shift downwards along lines of slope one..

In order to achieve 100% coverage of the IFU footprints the exposures were dithered to three different positions with overlapping fiber positions. Comparing the area in fibers to the area in spaxels in the cubes the overfilling factor averages 0.217 dex or 65%. The total area in all cubes is 10,731 arcsec2, or a deprojected area of 0.65 kpc2. The most distant IFU from the nucleus is at a projected radius of about 16 kpc. A simple extrapolation to the ≈800 kpc2 area of the disk within that radius is probably unsafe.

One final map to anticipate the next post(s). Wilson provides tables of model star formation rates for 16 age bins, 826 regions, and 4 different sources of isochrones including the same BASTI isochrones I use. The complete data set is available through Vizier. In the plot below I created a map of the recent star formation rate density interpolated to nominal 10″ resolution from their Table 2 models with BASTI isochrones. This should be compared to their Figure 16 (they use logarithmic scaling).

m31manga_wilsonsfr
Current (300 Myr average) star formation rate density in the PHAT footprint per models of Wilson et al. (2017) with positions of MaNGA IFUs overlaid.

A little more on the “burst age – burst mass degeneracy”

I just have a quick comment about my last two subjects. I mentioned both of them have exceptionally strong Balmer absorption as measured by the Lick index HδA. They also have similar 4000Å break strengths:

  • IC 0976: Dn4000 = 1.308±0.005, HδA = 8.05±0.31
  • MCG +07-33-040: Dn4000 = 1.153±0.009, HδA = 8.06±0.41

For context here’s a variation of the same plot I’ve shown several times of the MPA-JHU measurements for a large sample of SDSS galaxy spectra with their locations overlaid:

hd_d4000_2psb
Dn4000 – Hδ of SDSS spectra of post-starburst galaxies IC 976 and MCG +07-33-040 overlaid on measurements for a large sample of SDSS spectra

Both galaxies have HδA indexes near the upper limits of any measurements in SDSS, and both are clearly in the post-starburst area of the HδA-Dn4000 plane. Depending on your interpretation of the 4000Å break strength index IC 976 could be slightly older or have a slightly lower specific star formation rate, but the difference is small. Using the toy evolutionary models that people often use these two galaxies could easily be at slightly different stages of the same evolutionary trajectory.

In fact though the detailed star formation history models show rather different trends over the last ~Gyr, with recall MCG+07-33-040 having a more extended and more recently terminated period of enhanced star formation than IC 976, while the latter had considerably more stellar mass added by the starburst.

This nicely illustrates a point I raised 3 posts ago, which is that this particular pair of indexes can’t break the “burst age – burst mass” degeneracy. Full spectrum fitting with non-parametric star formation histories potentially can. I’m still not prepared to take these models too literally.

IC 976

I’m going to try to keep this one short. IC 976 is another post-starburst galaxy that was selected and recently observed by HST for the Zoogems project (proposal ID 15445, PI Keel). I took a shot at creating a color image by combining the ACS observation taken with the F475W filter (approximately equivalent to SDSS g band) with r and z band images from the Legacy Survey. Well that wasn’t too rewarding since this galaxy appears quite featureless.

IC 976 – RGB image created for Legacy Survey r and z band images + HST ACS F475W image from proposal ID 15445, PI W. Keel

Like the galaxy in the previous post the SDSS spectro pipeline misclassified this galaxy’s spectrum as a star with a recession velocity of ≈ 1200 km/sec. Unlike the galaxy in the previous post IC 976 is well known to have a post-starburst nuclear spectrum, and its correct heliocentric redshift of 0.00509 is listed in NED and confirmed with my own redshift estimation code. If that’s its Hubble flow redshift (doubtful) its distance would be about 21.8 Mpc (distance modulus m-M=31.7) and the 3″ SDSS fiber would cover 315 pc.

IC 976 redshift measurement
SDSS spectrum of IC 976 nucleus with best fit template overlay

Once again I ran my SFH modeling code on the SDSS spectrum, using only my metal rich PYPOPSTAR+EMILES ssp library, with results below:

Modeled star formation and mass growth histories of central region of IC 976 from SDSS spectrum 340044889930622976.

Despite the superficially similar spectra1this has a nearly identical HδA index of 8.1 ± 0.3 Ã…. this model favors an older (peak at 800 Myr lookback time), stronger, and shorter burst than the previous example. The model’s burst strength of ≈ 40 % of the present day stellar mass seems high, but the estimated total stellar mass within the fiber footprint is only ≈108.5 M☉, which is likely a small fraction of the galaxy’s total stellar mass. For a rough estimate of the total mass the SDSS g band Petrosian magnitude is listed as 13.6, making the absolute magnitude -18.1. With a solar g band absolute magnitude of 5.11 the galaxy’s luminosity is ≈ 109.3 L☉, and assuming a stellar mass to luminosity ratio around 1 the mass would therefore be ≈ 2×109 M☉. If the merger added a little over 108 M☉ to the system as implied by this model the mass ratio of the progenitors would be on the order of 20:1.

IC 976 was one of 7 post-starburst galaxies in an IFU based spectroscopic study by Pracy et al. (2012). This galaxy2designated “E+A 6” in the paper. had a very strong negative radial gradient in the Balmer absorption index, as did 5 of the 6 others in the study. They concluded that centrally concentrated starbursts fueled by minor mergers was the most likely cause of their present evolutionary state. The lack of any apparent tidal features in the available imaging of this galaxy likely reflects the age of the merger and mass ratio of the progenitors.

UGC 10200 and MCG +07-33-040

The Hubble Space Telescope “gap filler” program “Gems of the Galaxy Zoos” (proposal ID 15445, PI William Keel) had several prospective targets that I played a small role in selecting, and this recent HST observation was one of them. The actual target was the small disturbed galaxy at top left, which I will refer to as MCG +07-33-040. I don’t know if it was fortuitous that the larger and brighter UGC 10200 was also imaged in the same ACS field, but these are clearly interacting or at least have in the recent past, as is the small system in the upper right, which is identified as a blue compact galaxy with redshift z=0.00556 in Pustilnik et al. (1999). I’m going to focus on the top left galaxy in this post.

Galaxies UGC 10200 (lower right) and MCG +07-33-040 (upper left). HST/ACS, F475W filter. Proposal ID 15445, PI Keel.

What interested me wasn’t the galaxy image so much as its SDSS spectrum, which has three interesting characteristics:

SDSS spectrum of central part of MCG +07-33-040

First, this is a classic post starburst galaxy spectrum with extremely strong Balmer absorption lines1My code measures the Lick index HδA as an exceptionally strong 8.06 ± 0.41 Ã…. and no obvious evidence of emission. In fact, although this designation isn’t used much anymore, it’s actually a classic “A+K” spectrum which reverses the usual “K+A” terminology to indicate the light is dominated by early type (i.e. young) stars. Second and third, the spectrum was misclassified as coming from a white dwarf star, and the redshift was erroneously estimated as around 0.004 which was the maximum allowed for stars in the SDSS data reduction pipeline. Using a variation of the code that I use to measure redshift offsets I get a robust value of z = 0.006682 ± 9E-06

Template fit to SDSS spectrum of MCG +07-33-040

This is almost exactly the same redshift as its nearby companion UGC 10200 (also in the HST image above), which has a securely determined z = 0.00664

SDSS spectrum of central region of UGC 10200

For the rest of this post I’m going to assume the Hubble flow redshift is the measured one, which with my adopted cosmological parameters2which for the record are H0 = 70 km/sec/Mpc, Ωm = 0.27, Ωλ = 0.73. make the luminosity distance 28.8 Mpc, the distance modulus m-M = 32.3 mag, and the angular scale 138 pc/” or about 7 pc per ACS pixel. The projected distance between the centers of the two bright galaxies in the HST image is about 96″ or 13.2 kpc.

I spent some time last weekend downloading and starting to learn the software Aperture Photometry Tool (APT), which is interactive software for manually performing aperture photometry. Zooming in on the center of the presumed post starburst galaxy I located the reported position of the SDSS fiber as closely as I could. In the screenshot below the aperture radius was set to 30 pixels, the same size as the SDSS spectroscopic fibers. I measured the F475W AB magnitude to be 17.90 ± 0.013 without sky subtraction, which is close enough to the SDSS g band fiberMag estimate of 18.05. The SDSS g band Petrosian magnitude estimate is 15.16, so the fiber contains about 7% of the total galaxy light.

Central region of MCG +07-33-040 with position and size of SDSS fiber overlaid. Screenshot from APT

A striking feature of the HST image is there are many point-like symmetrical objects embedded within the otherwise nearly featureless diffuse light of the galaxy. Within the SDSS fiber footprint I count about 8-10 of these (the range being due to some uncertainty about what to call point-like and symmetrical). In order to get a handle on their contribution to the spectrum I did aperture photometry on them using a 3 pixel radius aperture with median sky subtraction from a 5 to 8 pixel radius annulus. The apparent magnitudes of the 5 brightest objects range from about 22.6 to 23.1. The summed luminosity of those 5 amounts to only 3.5% of the total light in the fiber, so the spectrum is mostly telling us something about the diffuse starlight. Even if one or more of those objects are foreground stars they can’t be a significant source of contamination. Clicking around the blank regions of the HST field I found fewer than one star per SDSS fiber size region, so it’s likely there are few if any foreground stars within the visible extent of the galaxy.

There is plenty of observational and theoretical evidence that massive star clusters are formed in mergers and close encounters of galaxies. As a coincidental example the merger remnant NGC 3921 — which was one of the 4 galaxies in my last post — has over 100 young globular clusters located both in the main body and southern tidal tail (Schweizer et al. 1996; Knierman et al. 2003). The brightest source in this galaxy (near the southern edge of the visible fuzz) has an apparent magnitude of m ≈ +21.7, which for the adopted distance modulus is M ≈ -10.6. With a solar g band absolute magnitude of 5.11 this corresponds to L ≈ 1.9×106 L☉ . The 5 brightest objects within the fiber have absolute magnitudes between about -9.7 and -9.2. These would be quite luminous for galactic globular clusters, but they’re likely to be fairly young and would fade by at least a few magnitudes as they age.

I haven’t tried a more sophisticated analysis of these objects’ sizes, but using the APT radial profile tool the presumed clusters look little different from nearby foreground stars and all that I’ve examined have FWHM diameters around 2-2.5 pixels. A strict upper limit to their sizes is therefore around 14 pc.

Someday I may undertake a complete census and luminosity function of the cluster system in this galaxy, and perhaps also look at the neighboring starburst galaxy UGC 10200. These systems by the way are cataloged as an interacting dwarf galaxy pair by Paudel et al. (2018) with a total stellar mass of log(M*) = 9.5 and a 3:1 mass ratio, which makes the estimated stellar mass of this galaxy just under 109 M☉. The system is very gas rich, with a neutral hydrogen mass estimated (by the same source) of 109.69 M☉. There are actually at least two published HI maps of this system. The one below, from Thomas et al. (2004) shows that atomic hydrogen extends over essentially the entire extent of the Hubble image above, including the target galaxy.

VLA map of HI gas in UGC 10200 system

Next I turn to star formation history models for the post starburst spectrum at the top of the post. This uses the same Stan model code as my MaNGA investigations with some minor pre- and post-processing adjustments. I ran two separate models. One used a metal poor subset of the EMILES SSP libraries with Z ∈ {[-2.27], [-1.26], [-0.25]} with, as usual, Kroupa IMF and BaSTI isochrones. I did not attempt to append younger models, so the youngest age is 30Myr. For completeness I also ran a model with my usual EMILES subset + PYPOPSTAR models and Z ∈ {[-0.66], [-0.25], [+0.06], [+0.40]}. First, here is the modeled star formation history with the metal poor subset. I’ve again used a logarithmic time scale and linear star formation rate scale.

Model star formation history of central region of MCG +07-33-040 using metal poor subset of EMILES SSP library

Next is the metal rich subset:

Model star formation history of central region of MCG +07-33-040 using metal rich subset of EMILES+pypopstar SSP library

Both model runs show a fairly steep ramp up in star formation beginning at about 600Myr lookback time and a steep decline around 50Myr ago. The lingering star formation in the metal rich model might be a manifestation of the infamous “age metallicity degeneracy” since Balmer Hα emission is too low to support this level of star formation. Comparing the mass growth histories exposes a more subtle effect: the metal poor models have a consistently higher mass fraction at any given epoch. Also, the period of accelerated star formation involved a slightly smaller fraction of the present day stellar mass.

Mass growth histories of MCG +07-33-040 using metal poor and metal rich subsets of EMILES SSP library

Both models fit the data well. In terms of mean log-likelihood the metal poor model outperformed the metal rich, but only by about 0.4%. The proper Bayesian way to compare models is through the “evidence,” which is hard to estimate accurately. I suspect the metal poor model would be at least slightly flavored because it has fewer parameters than the metal rich one.

Posterior predictive fit to SDSS spectrum of MCG +07-33-040

The duration of accelerated star formation (about which both models agree) is a little surprising in light of simulations that usually show a fairly short SF burst in the first passage in mergers. But, simulations have only explored a small range of the potential parameter range. Studies of low mass galaxies with extended, massive HI haloes might be of interest.

One more sanity check. Suppose the closest approach between our target and UGC 10200 was 60Myr ago, allowing another 10Myr before (presumably) supernova feedback quenched star formation. Assuming the relative motion is transverse to our line of sight traveling 13.2 kpc in 60Myr implies an average separation speed of ≈215 km/sec. This is a perfectly reasonable value for a galaxy pair or loose group.

Finally for this spectrum, here is a quick look at emission line fluxes. Even though visually not at all obvious several lines were detected at marginal (>2σ) to high (>5σ) confidence. A couple of surprises are the [O I] 6300Ã… line, which is often only marginally detected even in star forming systems, is a firm (3σ) detection and stronger than the usually more prominent [O III] doublet. Also, the [S II] 6717-6730 doublet is a firm detection while the [N II] doublet is not. What this means is unclear to me. Most of the “strong emission line” metallicity indicators that I have formulae for include [N II] (or [O II] which are out of the wavelength range of these spectra), so it isn’t really possible to make a gas metallicity estimate. It’s a safe guess it’s subsolar though.

line[Ne III] 3869Hζ[Ne III] 3970HεHδHγHβ[O III] 4959[O III] 5007[O I] 6300[O I] 6363[N II] 6548Hα[N II] 6584[S II] 6717[SII] 6730
mean17.12.31.51.61.92.17.92.44.98.22.82.939.12.514.414.2
s.d.6.32.01.41.41.61.83.12.02.92.81.92.02.61.82.82.8
ratio2.71.11.11.11.21.22.61.21.73.01.51.515.21.45.25.2
Flux measurements for tracked emission lines in spectrum of MCG +07-33-040. Units are 10-17 erg/sec/cm2

There are at least two questions about this galaxy that it would be nice to have answers for. First, since the SDSS fiber only includes about 7% of the luminosity and a similar fraction of the stellar mass we really don’t know if it is recently quenched globally or just where SDSS happened to target. My guess from this HST image is that it is globally quenched because its companion UGC 10200 shows clear evidence of dust lanes and extended star forming regions even in this monochromatic image, while the diffuse light in this galaxy looks relatively featureless. A definitive answer would require IFU spectroscopy though.

A second question is whether the star cluster system is truly young or primordial (or both). This would require color measurements from a return visit by HST using at least one more filter in the red. Estimating a luminosity function is feasible with the existing data, although it would have rather shallow coverage. From my casual clicking around the image it appears to be possible to reach magnitudes a little larger than +24 with reasonable precision.

When this topic first came up on the old Galaxy Zoo talk I thought these might comprise a new and overlooked category of galaxies. In fact though all of the examples I investigated belonged to cataloged galaxies and most of the spectra were of small regions in much larger nearby galaxies. A few galaxies that were in the original Virgo Cluster Catalog and excluded from the EVCC because of lack of redshift confirmation should be added back. There were probably only a few like this one with large errors in redshift estimates and high signal to noise spectra. I haven’t spent enough time with the literature to know if rapidly quenched dwarf galaxies are especially interesting. Maybe they are.

Journal notes: Haines et al. (2015), “Testing the modern merger hypothesis…”

While browsing through the ADS listing of papers that cite Schawinski’s paper that I’ve been discussing for a while I came across this one by Haines et al. with the full title “Testing the modern merger hypothesis via the assembly of massive blue elliptical galaxies in the local Universe”. Besides being on the same theme of searching for post-starburst or “transitional” galaxies in the local universe that I’ve been pursuing for some time the paper was interesting because it made use of IFU based spectroscopic data that predates MaNGA. As it happens 4 of the 12 galaxies have observations in the final MaNGA release, providing an excellent opportunity to compare results from completely independent data sets.

The “modern merger hypothesis” that the authors tested relates to a topic I’ve discussed before, which is that N-body simulations show that strong, centrally concentrated starbursts are a possible outcome of major gas rich galaxy mergers around the time of coalescence. If some feedback process (an AGN or supernovae) rapidly quenches star formation there will ensue a period of time when the galaxy will be recognizable as post-starburst.

In a series of long and rather difficult (and influential judging by the number of citations) Hopkins and collaborators (2006, 2008a, 2008b) have made a case that major gas rich mergers with accompanying starbursts are in fact the major pathway to the formation of modern elliptical galaxies. They claim that their merger hypothesis accounts for a variety of phenomena, including the growth and evolution of supermassive black holes and quasars.

The specific aspect of the merger hypothesis this study tried to address was the prevalence of strong centrally concentrated starbursts in a sample of ellipticals in the process of forming as evidenced by visible disturbances consistent with recent mergers. The main tool they used was a suite of simple star formation history models with exponentially decaying star formation rate with single (also exponentially decaying) bursts on top of varying ages and decay time scales. They used these to predict just two quantities: Balmer absorption line strength measured by the average of the Lick HδA and HγA indexes, and the 4000Å break strength index Dn4000. For reference here is a screen grab of their model trajectories:

Predected trajectories in the Hδ – Dn4000 plane per Haines et al. (2015). Clipped from the electronic journal paper.

This is a pretty standard calculation variations of which have been performed for decades, and this graph looks much like others I have seen in the literature. A fairly basic problem with it though is that position in the Balmer – D4000 plane doesn’t uniquely constrain even the recent stellar evolution. In astronomers’ parlance there is a “degeneracy”1the term refers to a situation in which multiple combinations of some parameters of interest produce effectively equivalent values of some observable(s), or of course the converse. The best known example is the “age-metallicity degeneracy,” which refers to the fact that an old metal poor population looks like a younger metal rich one in several respects such as broad band colors. between burst strength (if any) and burst age. This is a well known problem with the Balmer line strength index that was already recognized by Worthey and Ottaviani (1997), who developed these indexes. Adding a second index in the form of the 4000Ã… break strength doesn’t break the degeneracy: there are regions of the plane where bursting and non-bursting populations overlap, as can be seen clearly in the graphic above. This is actually a problem for any attempt to identify post-starburst galaxies. After correcting for emission most ordinary starforming galaxies have strong Balmer absorption lines, so using that index alone will certainly produce many false positives. On the other hand selection criteria like those used by Goto and many others before and after — selecting for both strong Balmer absorption and weak emission — will capture only a small interval in post-starburst galaxies’ life cycles.

hd_d4000_bigsample
Hδ line strength vs. 4000Å break index for a large (~380K) sample of SDSS galaxy spectra. Measurements from the MPA-JHU analysis pipeline downloaded from SDSS Skyserver

Let’s get to results. Some basic details of the sample are in the table below. Morphological classifications are from McIntosh et al. (2014) as given in this paper. The abbreviations are SPM: spherical post merger; pE: peculiar Elliptical. The two marked pE/SPM didn’t have a strong consensus among several professional classifiers. I list them in order of my own visual impression of degree of disturbance. I also list redshifts taken from the MaNGA catalog and Petrosian colors.

NED nameNYU IDmangaidplateifuMorphzu-rg-i
NGC 39215410441-61744510510-6103SPM0.0191.970.86
MRK 3857194861-6049708940-6102pE/SPM0.0281.430.63
MRK 3661009171-6033097993-1902pE/SPM0.0271.590.79
NGC 1149223181-371558154-6103pE0.0292.291.11
Columns: (1) Common catalog designation (NED name). (2) NYU VAC ID. (3) MaNGA mangaid. (4) MaNGA plateifu. (5) Morphology (see text). (6) redshift from MaNGA DRP catalog. (7-8) Petrosian u-r and g-i colors from NYU VAC via the MaNGA DRP catalog.

The main prediction of the merger with accompanying centrally concentrated starburst hypothesis the paper tests is that the Balmer absorption index should be large and have a negative gradient with radius while the 4000Ã… break strength should be low with a positive gradient. The authors concluded that only one member of their sample — nyu541044 — clearly falls in the post-starburst region (marked as region 4 in the graph above) of the <Hδ, Hγ> – Dn4000 plane. The two pE/PM galaxies, both of which are in my sample, lie in the starforming region 1. They inferred from this that these galaxies are undergoing at most a weak burst. I’m going to mildly disagree with that conclusion.

Screenshot from 2022-07-07 15-23-36
Measured values for the specified indexes from Haines et al. (2015). Clipped from the electronic journal paper.

I have calculated the pseudo Lick index HδA and Dn4000 as part of my analysis “pipeline” since I started this hobby. I actually make these measurements in the initial maximum likelihood fitting step since they don’t depend on modeling except for small (usually) emission corrections. I don’t calculate an Hγ index, but its theoretical behavior is similar to Hδ. I’m trying here just to verify the approximate magnitude and radial trends of the chosen indexes. The two IFUs used in the Haines study had larger spatial coverage than these MaNGA observations (but much smaller wavelength coverage, which will become important). Instead of their strategy of binning in annuli I used my usual Voronoi binning strategy with a minimum target S/N. There were some oddities in the NYU estimates of effective radii so I chose to use distances from the IFU center in kpc for these plots. The distances assigned to the multiply binned spectra are the same as Cappelari’s published code produces; for single fiber spectra it’s just the position of the fiber center.

My measurements agree reasonably well with those of Haines et al. All three of the most disturbed galaxies have central Hδ indexes > 5Å with NGC 3921 (plateifu 10510-6103, nyu541044) having a larger central value and steeper gradient in the inner few kpc than the two pE/SPM galaxies. The fourth galaxy shows no obvious trend in either index with radius2The next several plots show trend lines for each galaxy computed by fitting simple loess curves to the data using the default parameters in ggplot2. These, and especially the confidence bands included in the plots, should not be taken seriously!. The central values where the S/N is highest are in good agreement.

Lets turn to the results of star formation history models, which I ran on all 4 data sets. First, here are 100Myr averaged star formation rate density and specific star formation rate versus distance:

Star formation rate density vs. distance from IFU center (kpc) for 4 disturbed early type galaxies.
Specific star formation rate density vs. distance from IFU center (kpc) for 4 disturbed early type galaxies.

Three of these galaxies are clearly experiencing centrally concentrated episodes of star formation, and two are at or near starburst levels in specific star formation rate near their centers. As seen below two of these straddle my estimate of the “spatially resolved star forming main sequence” while the one presumed post-starburst galaxy reaches it in the central region.

mstar_sfr_4spm
Star formation rate density versus stellar mass density for 4 disturbed early type galaxies

As I’ve shown several times before there’s a reasonably tight linear relationship between modeled star formation rate and Hα luminosity density. The plot shows Hα luminosity density corrected for modeled stellar redenning, which certainly underestimates attenuation in emission regions. The modeled star formation rates are consistently above the Kennicut relation shown as the straight line as I’ve seen in every sample I’ve looked at.

Star formation rate density vs. Hα luminosity density for 4 disturbed early type galaxies

Finally, lets take a look at detailed star formation histories. Instead of my usual practice of plotting them all in a grid here I just display 2 binned star formation histories. One comprises the innermost 7 bins, which since the fibers are arranged in a hexagonal grid should form a regular hexagon around the IFU center. These range in “radius” from about 0.75 to 1.1 kpc in these four galaxies. The second is for an “annulus” in approximately the outer kpc of each IFU. The extent of the IFU footprints ranges from 3.1 to 5.9 kpc. I calculate these by summing the contributions in each SFH model contributing to the bins, not by running new models for binned spectra. Since the dithered fiber positions overlaps this overestimates the total mass in each bin, but I care about the shape and timing of events rather than the absolute values of star formation rate estimates.

The next 4 plots display the results. Lookback time is logarithmically scaled with the same range and ticks for each SFH. Vertical scales are linear and differ for each graph. The graphs are in the same order as the basic information table above. As I’ve written before these models “want” to have smoothly varying mass per time bin which has the unfortunate effect of producing jumps in the apparent SFR when the bin widths change. In the BaSTI isochrone based SSP models these occur at 100 Myr, 1 Gyr, and 4 Gyr and can sometimes be quite prominent.

With caveats out of the way the one clear post-starburst in the sample had (per the model) a powerful and short starburst at ≈300 Myr lookback time, with a small amount continuing to the present (this can’t be seen at the scale of the graph, but ongoing star formation is ~1 M☉/yr). The total mass contribution from the burst and subsequent star formation is around 15%.

The two apparent ongoing starbursts have later bursts of star formation that are slightly weaker in terms of total mass contribution and peak star formation rate, but still quite significant. All three of the starburst/post-starburst galaxies appear to have had two major waves of late time (last ~2 Gyr or less) star formation. As I’ve written before in merger simulations the progenitors usually complete a few orbits before coalescence, with some enhanced star formation around each perigalactic passage. I hesitate to take these models that literally.

Turning finally to the last and least disturbed galaxy, NGC 1149, despite the bursty appearance of the SFH there’s no evidence for a major starburst in the cosmologically recent past. Whether an older starburst can be detected in this kind of modeling approach needs investigating.

One last set of graphs that may be useful. These show cumulative star formation histories — basically the cumulative sum of mass contributions starting from the oldest time bin. This is similar to a mass growth history which is a popular visualization. In my calculation of the latter the contributions are to the present day stellar mass, so an allowance for mass loss and remnant mass is made3these come from the source of the SSP models and are themselves models. Probably they are somewhat better than guesses. These things are basically black boxes to users.. The graphs are for the central regions only. Note the major virtue of these is that the contributions of major episodes of star formation can be estimated at a glance.

Cumulative star formation histories for central regions of 4 disturbed early type galaxies

To wrap up this part of the post 3 of these galaxies are compatible with the “modern merger hypothesis,” that is they have experienced centrally concentrated but spatially wide spread starbursts. The reason two of them don’t have post-starburst characteristics in the Hδ – D4000 plane is their starbursts are still underway. The current burst of star formation contributes about 5-10% of the mass in the central regions of these two. How much more is available is unknown (at least to me until I get around to finding out if there are HI mass estimates available).

Future plans: I’ve completed model runs on the 24 “post-starburst” galaxies in the MaNGA ancillary program dedicated to them. I may have something to say about them. I also may have something to say about one of the Zoogems targets that I had a small part in selecting.

Continue reading “Journal notes: Haines et al. (2015), “Testing the modern merger hypothesis…””

A little more on Schawinski’s blue early type galaxies

As I mentioned two posts ago there are 24 of these galaxies in the final MaNGA data release, a remarkable 11% of the full sample. I ran my SFH model code on all of these along with the prerequisite redshift offset routine1I actually completed these some time ago. I just haven’t had time to do much analysis or write about them. SDSS thumbnails of the sample are shown below. As expected none of these have significant spiral structure visible at SDSS resolution, but at least a few are noticeably disturbed.

thumbnails_blueetg
SDSS thumbnail images of Schawinski et al.’s blue early type galaxies in MaNGA final data release (SDSS DR17)

I’m just going to discuss a few topics in this post. I’ll save a more detailed discussion for when I’ve completed analysis of the ancillary post-starburst sample, which is underway now. First, here are velocity fields calculated for the stacked RSS data, with a signal to noise cutoff of 3, the same as I used for my analysis of rotation curves of disk galaxies. Note in the graphic below the ordering is different from the image thumbnails.

vfs_blueetg
Line of sight velocity fields of Schawinski et al.’s blue early type galaxies in the final MaNGA data release

By my count (based entirely on visual inspection) all but 2 of these exhibit large scale rotation, with perhaps 15 or 16 classifiable as regular rotators with the remainder containing multiple velocity components including a couple with (perhaps) kinematically distinct cores. The preponderance of rotating systems surprised me at first, but according to a review by Cappellari (2016) large scale rotation is predominant at least at lower stellar masses (Schawinski et al. characterized their sample as being “low to intermediate mass” among early type galaxies). The velocity fields indicate that many of these contain stellar disks, perhaps embedded in large bulges. That’s still consistent with classification as “early type galaxies.” Apparently the original Galaxy Zoo classification page used the term “elliptical” as the early type galaxy choice, but in the data release paper by Lintott et al. (2011) there’s a statement that the “elliptical” class should comprise ellipticals, S0’s, and perhaps Sa’s from Hubble’s classification scheme.

Depending on how my effort to do non-parametric line of sight velocity modeling goes I may return to examine the kinematics of this sample in more detail, in particular to look for evidence of gas and stellar kinematic decoupling.

Turning to the recent star formation history this sample runs the gamut from large scale starbursts to passively evolving as seen in the plot of (100 Myr averaged) star formation rate versus stellar mass density for all analyzed binned spectra (of which there were 1525 in the full sample). For reference the straight line is my estimate of the center of the local “spatially resolved star formation main sequence.” This is just a weighted least squares fit to the sample of 20 non-barred spirals with star forming BPT diagnostics that I discussed some time ago. My SFMS relation has the same slope as estimated by Bluck but is offset higher by about 0.7 dex, which probably just reflects the very different methods used to estimate star formation rates. The contour lines are the densest part of the relationship from the passively evolving Coma cluster sample that I also discussed in that post. The majority of the blue etg sample falls in the green valley, consistent with Schawinski et al.’s observation that only about 1/2 of the sample showed evidence for ongoing star formation.

sfr_mstar_blueetg
“Spatially resolved” star formation rate density versus stellar mass density for 24 blue early type galaxies in final MaNGA data release. Contour lines are corresponding values for 33 passively evolving Coma cluster galaxies.

Most of the points offset the most on the high side of the SFMS come from just two galaxies: MRK 888, which I’ve discussed in the last few posts, and SDSS J014143.18+134032.8 (this is apparently not in any “classical” catalog). The legacy survey cutout below clearly shows an extended tidal tail that’s a certain sign of a relatively recent merger.

SDSS J014143.18+134032.8, a disturbed, star-bursting blue early type galaxy

I just want to take a quick look at this one: below are maps of the star formation rate density and SSFR as well as scatterplots of the same against distance from the IFU center. As with MRK 888 ongoing star formation is widespread with a peak near the center, a classic case of a merger fueled starburst. In this galaxy star formation peaks in a ring somewhat outside the nucleus. The ring can be seen clearly in the SDSS cutout and must consist of HII regions.

8095-1902_sfr_ssfr
SDSS J014143.18+134032.8 (mangaid 1-41541; plateifu 8095-1902) Star formation rate density and specific star formation rate – maps and scatterplots against radius in kpc.

Schawinski et al. briefly discuss the possibility that their blue ETG’s could be progenitors of E+A (aka K+A) galaxies. This galaxy and MRK 888 are plausible candidates — if star formation shut off rapidly they would certainly exhibit strong Balmer absorption for a time after emission lines disappeared since they already do. Other members of this sample are already fading towards the red sequence, and if they ever qualified as “post-starburst” it must have been in the past.

I plan to look at star formation histories in more detail after I’ve completed model runs on the MaNGA post-starburst sample.